Ritu Raman

RituRaman.jpg

Ritu Raman, PhD is the d’Arbeloff Career Development Assistant Professor of Mechanical Engineering at MIT. Her lab is centered on engineering adaptive living materials for applications in medicine and machines. The Raman Lab’s current focus is building neuromuscular actuators to restore mobility and power robots. Prof. Raman has received several recognitions for scientific innovation, including being named a Kavli Fellow by the National Academy of Sciences and being named to the Forbes 30 Under 30 and MIT Technology Review 35 Innovators Under 35 lists. She is the author of the MIT Press book Biofabrication. She is passionate about increasing diversity in STEM and has championed many initiatives to empower women in science, including being named a AAAS IF/THEN ambassador and founding the Women in Innovation and STEM Database at MIT (WISDM). Prof. Raman received her BS from Cornell University and her PhD as an NSF Graduate Research Fellow at the University of Illinois at Urbana-Champaign. She completed her postdoctoral research with Prof. Robert Langer at MIT, funded by a L’Oréal USA For Women in Science Fellowship and a Ford Foundation Fellowship from the National Academies of Sciences, Engineering, and Medicine.

Research Group Website
Personal Website
Google Scholar

Talk : Mechanics of Biological Motor Control

Human beings and other biological creatures navigate unpredictable and dynamic environments by combining compliant mechanical actuators (skeletal muscle) with neural control and sensory feedback. Abiotic actuators, by contrast, have yet to match their biological counterparts in their ability to autonomously sense and adapt their form and function to changing environments. The Raman Lab uses engineered tissues as a platform to understand neuromuscular architecture and function in physiological and pathological states, restore mobility after disease and damage, and act as actuators in human-made machines. This talk will cover the advantages, challenges, and future directions of understanding and manipulating the mechanics of biological motor control.